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SIMULATION OF MOTION OF AN
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This paper studies the vibrator vertical motion of a metallic sphere placed in a
time-varying magnetic "eld. The magnetic "eld is produced by a set of coaxial loops carrying
high-frequency electric currents. A mathematical model for the motion of the sphere is
developed and examined via numerical simulations for various materials and magnetic "eld
parameters. The contribution of this paper is the development of the levitation force as
a function of the specimen velocity.
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1. INTRODUCTION

The process of electromagnetic levitation (EML) is now a well-known metallurgical
technique to produce pure homogeneous melts. The procedure consists of placing a piece of
metal in a time-varying magnetic "eld produced by a coil carrying a high-frequency electric
current. The magnetic "eld induces eddy currents in the metal which lead to two major
e!ects. On one hand, the interaction between the eddy currents and the applied magnetic
"eld generates a Lorentz force that can support the specimen against gravity for
appropriate values of the system parameters. On the other hand, the eddy currents heat or
melt the specimen by Joule e!ect. This technique prevents the metal from contamination
with impurities due to the container wall which is used in classical melting methods.

A di$culty encountered during the EML experiments is the stability of the suspended
droplet inside the excitation coil. The stability problem has been discussed since the earliest
works on electromagnetic levitation melting [1]. Static stability was formulated in terms of
the optimal coil geometry, current intensity and frequency and Lorentz force acting on the
specimen. Several analytical models to compute the Lorentz force were developed. All these
models considered the levitation coil as a stack of current loops or helices.

Brisley and Thornton [2] performed an analysis of the electromagnetic levitation of
a conductive sphere in an axially symmetric "eld produced by circular current loops.
Formulas for the magnetic "eld both inside and outside of a sphere were developed. The
levitation force was derived by considering the force on the loops due to the "eld of the
induced eddy currents.

In deriving the experience for the Lorentz force, Rony [3] considered the specimen as
a magnetic dipole interacting with a homogeneous magnetic "eld which varies slightly over
the region of the dipole.

LohoK fer [4] re-examined Rony's assumptions and reported a solution based on
solving the exact Maxwell's equations. The equations were solved analytically for a
non-ferromagnetic conducting sphere placed arbitrarily in a sinusoidally alternating
magnetic "eld.
022-460X/01/190559#17 $35.00/0 ( 2001 Academic Press
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Cummings and Blackburn [5] observed that the "rst mode of oscillation of a levitated
specimen corresponds to the translational motion of the specimen, whereas the other modes
are related to its surface oscillation. For certain values of the levitation system parameters,
the vibratory motion of the specimen could be unstable. Mestel [6] suggested that one way
to reduce the instabilities is to design the coil such that the specimen is stable with respect to
small horizontal and vertical displacements.

The dynamic stability problem was also addressed. For dynamic stability analysis, the
equations of motion of levitated specimens were "rst developed and then linearized about
the operating point. Studying the linearized equation of motion, one can obtain useful
information in terms of the damping and the sti!ness of the specimen}coil system. Also,
stability criteria can be derived. To investigate the stability of levitated specimens, Bocian
and Young [7] developed a circuit model for a levitation system to form the linearized
equation for the vertical motion of specimens. Two types of instabilities that often occur in
practice were considered, namely, the growing vertical oscillation, leading to the ejection of
the specimen through the supporting coil and the rupture of the suspended droplets.
Regarding the former type, the system may become unstable when a capacitance is
considered in the circuit of the levitation coil. If the capacitance is too small, the damping
coe$cient in the linearized equation of vertical motion of the specimen may become
negative, leading to an unstable motion.

Holmes [8] proposed the linearized equations of horizontal and vertical motion for small
specimens levitated in coils with axial symmetry. Stability criteria in terms of the natural
frequencies of the system were also derived. The criteria are always satis"ed for levitated
non-magnetic specimens in regions of constant "eld gradient on the coil axis. No
damping-related issue was addressed in this work.

Hence, to develop the equations of motion and to study the dynamic stability of levitated
specimens, the availability of the expressions for the damping and sti!ness forces is
a prerequisite. Bocian [7] derived the levitation force as a function of the velocity of the
specimen by using the circuit model of the specimen}coil system. Both damping and
sti!ness coe$cients are available in the resulting linearized equation of motion. To obtain
the expression for the levitation force, Holmes [8] "rst linearized the expression for the
magnetic "eld intensity about an equilibrium position of the specimen along the coil axis.
Then, the levitation force was derived by using the magnetic dipole model [9]. The resulting
linearized equations of motion are in the form of free undamped vibration equation in
which the sti!ness coe$cient must be positive for stable levitation. In this work, we propose
an expression for Lorentz force due to the motion of the specimen with respect to the coil by
considering the exact solutions of Maxwell's equations for the specimen}coil system. We
used this expression for the Lorentz force to obtain non-linear and the linearized equation
for the vertical motion of spherical specimens. Hence, the damping and sti!ness of the
specimen}coil system can be calculated in terms of the geometric and source parameters of
the coil.

The mathematical model is developed in section 2. The results of the numerical
simulations are discussed in section 3. Finally, several concluding remarks are made.

2. MATHEMATICAL MODEL

Let us consider the levitation system shown in Figure 1. It is composed of N coaxial
circular loops of current lying in parallel planes (stack of loops). The radius of each loop is
denoted by b

k
, k"1,2,N. The loops carry an alternating electric current R[I

k
e+ut], where

I
k
is the peak value, u is the angular frequency (u"2n f, where f is the frequency), t is the



Figure 1. Levitation system.
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time, j"J!1 and R ( ) ) denotes the real part of the complex current. The current is
positive for the lower loops and negative for upper loops. The body to be levitated is
a conductive sphere of radius R, mass M, electric conductivity p, and magnetic permeability
k
i
and its center lies on the axis of symmetry of the system. The Cartesian reference frame

(x@, y@, z@) is "xed at the center of the bottom loop and the unit vector of the z@-axis is denoted
by k@. The Cartesian and spherical reference frames, (x, y, z) and (r, h, u) respectively, are
attached to the conductive sphere in motion and their origins are at the center of the sphere.
In this presentation, z is constrained to be parallel to z@ and the sphere does not spin. The
unit vector of z-axis of the Cartesian reference frame (x, y, z) is denoted by k and the unit
vectors of the spherical reference frame (r, h, u) by e

r
, eh, eu respectively. The kth loop is

de"ned by (r"q
k
, h"a

k
), with respect to the spherical reference frame. The conductive

sphere moves along z@-axis with velocity v@. Its center has the co-ordinate z@"z@(t) with
respect to the "xed Cartesian reference frame (x@, y@, z@). No motion parallel to the plane of
the loops is considered in this model.

The time-averaged Lorentz force density exerted on the sphere is given by

f"1
2
R (J

1
]B

1
*), (1)

where J
1

is the induced eddy current density, B
1

is the magnetic #ux density, underscore
denotes a complex variable and R ( ) ) and * are the real part and the complex conjugate of
a complex variable respectively. In the above equation, the magnetic "eld quantities are
measured with respect to the unprimed reference frame which is attached to the body in
motion. From now on, the unprimed symbols denote quantities measured in the moving
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reference frame, while the primed symbols denote quantities measured in the "xed reference
frame.

The time-averaged Lorentz force density in equation (1) can be expressed with respect to
the "xed reference frame by considering the following set of transformations [10]:

J"J@, B"B@, E"E@#v@]B@, (2}4)

where E and E@ are the electric "eld intensity measured in the mobile and "xed reference
frames respectively. Applying Ohm's law, which states that

J"pE, (5)

along with equations (2)}(4), and considering the fact that the force is independent of the
reference frame in which it is measured, that is, f"f @, the time-averaged Lorentz force
density in equation (1) reads

f @"1
2
R[p(E

1
@]B

1
@*)#p(v@]B@)]B

1
@*]"f @

s
#f @

d
. (6)

We called the "rst part of the time-averaged Lorentz force density in equation (6),

f @
s
"1

2
R[p(E

1
@]B

1
@*)],

the sti!ness component, and the second part,

f @
d
"1

2
R[p (v@]B

1
@)]B

1
@*],

the damping component.
In developing the expression for f @

s
, the e!ects of the motion were neglected. The magnetic

"eld quantities can be computed with respect to either "xed or mobile reference frames. For
convenience, the spherical reference frame (r, h, u) was chosen to develop the expression
for f

s
. Therefore, the sti!ness component of the time-averaged Lorentz force density reads

f
s
"1

2
R[(!jupA

1
u)]B

1
*], (7)

where A
1
u and B

1
are the magnetic vector potential and the magnetic #ux density in the

sphere, respectively, as they were reported by Brisley and Thornton [2].
The damping component f

d
was obtained by neglecting the di!usion of the magnetic

"eld into the spherical conductor during the motion. Therefore, the damping component is
given by

f @
d
"1

2
R[p(v@]B

1
@
app

)]B
1
@*
app

], (8)

where B
1
@
app

is the applied magnetic #ux density. The expressions for the magnetic "eld
produced by a single loop computed in a spherical reference frame with the origin placed on
the axis perpendicular to the plane of the loop at its center are available in the book by
Smythe [9]. These expressions, when they are written with respect to the spherical reference
frame (r, h, u) de"ned in Figure 1, read, respectively,

B
app,r

"!

k
i

2

N
+
k/1

I
k
sin a

k
q
k

=
+
n/1

P1
n
(cos a

k
)P

n
(cos h) A

r

q
k
B
n~1

, (9)

B
app,h"!

k
i

2

N
+
k/1

I
k
sin a

k
q
k

=
+
n/1

1

n
P1

n
(cos a

k
)P

n
(cos h) A

r

q
k
B
n~1

, (10)

B
app,u

"0, (11)
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where P
n
( ) ) is the Legendre polynomial of degree n and P1

n
( ) ) the associate Legendre

polynomial of degree n and order 1. To use the expressions for the applied magnetic "eld in
equations (9) and (10), the damping component of the time-averaged Lorentz force density
has to be computed with respect to the spherical reference frame (r, h, u). Therefore, the
damping component has the form

f
d
"1

2
R[p (!v]B

1 app
)]B

1
*
app

], (12)

where v is the velocity of the magnetic "eld as if the conducting sphere is "xed and the
magnetic "eld moves along the z-axis with a velocity equal to v@, but in the opposite
direction.

The time-averaged Lorentz force density f measured with respect to the mobile spherical
reference frame was obtained by summing equations (7) and (12), result in

f"f
s
#f

d
"1

2
R[(!jupA

1
u)]B

1
*]!1

2
R[p (v]B

1 app
)]B

1
*
app

]. (13)

Then, the levitation force which supports the sphere against gravity was found by
integrating f in equation (13) over the volume of the sphere. With respect to the reference
frames shown in Figure 1, the volume integral to be sought is of the form

F
z
"P

Sphere

f )k d(<ol)

"P
Sphere

f
s
)k d(<ol)#P

Sphere

f
d
) k d(<ol)

"F
z,s
#F

z,d
, (14)

where

F
z,s
"P

Sphere

f
s
) k d(<ol) (15)

is the sti!ness component and

F
z,d

"P
Sphere

f
d
)k d(<ol) (16)

is the damping component of the Lorentz force.
In the next two subsections, the expressions for damping and sti!ness components of the

levitation force were considered.

2.1. THE DAMPING COMPONENT F
z,d

Expanding the vectorial product in equation (12), with v"uk"v(cos he
r
!sin heh),

gives

f
d
"1

2
R[pv(B2

app,h cos h#B
app,hBapp,r

sin h)e
r

!pv(B
app,r

B
app,h cos h#B2

app,r
sin h )eh]
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"1
2
pv(B2

app,h cos h#B
app,hBapp,r

sin h)e
r

!1
2
pv (B

app,r
B
app,h cos h#B2

app,r
sin h)eh . (17)

Substituting equation (17) into equation (16) and rearranging the terms, the damping
component of the Lorentz force reads

F
z,d

"P
Sphere

f
d
) k

s
d(<ol)

"vnpP
R

0
P

1

~1

(B
app,h cos h#B

app,r
sin h)2r2dr d(cos h). (18)

Substituting equations (9) and (10), which provide the expressions for B
app,r

and B
app,h,

respectively, into equation (18), the damping component can be written as

F
z,d

"v
npk2

i
4

N
+
l/1

I
l
sin a

l
q
l

N
+
k/1

I
k
sin a

k
q
k

=
+

m/1

=
+
n/1

P1
m
(cos a

l
)P1

n
(cos a

k
)

qm~1
l

qn~1
k

]P
R

0

rm`n dr P
1

~1
Csin hP

m
(cos h)#

cos h
m

P1
m
(cos h)D

]Csin hP
n
(cos h)#

cos h
n

P1
n
(cos h)Dd(cos h). (19)

The expression for F
z,d

in equation (19) can be further simpli"ed. Solving the integral with
respect to r, which simply gives

P
R

0

rm`ndr"
Rm`n`1

m#n#1
, (20)

expanding the product in the second integral in equation (19), using the following
relationships for Legendre polynomials:

xP1
n
(x)"

1

2n#1
[nP1

n`1
(x)#(n#1)P1

n~1
(x)] (21)

and

J1!x2 P1
n
(x)"

n (n#1)

2n#1
[P

n`1
(x)!P

n~1
(x)], (22)

and the orthogonality of the Legendre polynomials,

P
1

~1

Pl
m
(x)Pl

n
(x) dx"G

0, mOn,

2

2n#1

(n#l)!

(n!l) !
, m"n,

(23)
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re-indexing and rearranging, the double summation in m and n in equation (19) was
transformed into a single one as shown in the "nal expression for the damping component,

F
z,d

"v
npk2

i
R

2

N
+
l/1

I
l
sin a

l

N
+
k/1

I
k
sin a

k

=
+
n/2

n!1

n (4n2!1)

]A
R

q
l
B
n

A
R

q
k
B
n
P1
n
(cos a

l
)P1

n
(cos a

k
). (24)

2.2. THE STIFFNESS COMPONENT F
z,s

To develop the expression for F
z,s

, the procedure was straightforward. First, the
expression for f

s
given by the "rst term in equation (13) was obtained and, then, the dot

product and the integration over the volume of the sphere in equation (15) were performed.
The expressions for A

1
u and B

1
in equation (13) developed in the paper by Brisley and

Thornton [2] were considered. Since the procedure applied in this work to obtain the
expression for F

z,s
is similar to that reported in Li [11] for the case of a single loop, only the

"nal form of the expression for F
z,s

is given, namely,

F
z,s
"!

nupk2
i
R

4

N
+
l/1

I
l
sin a

l

N
+
k/1

I
k
sin a

k

=
+
n/1

1

n#1 A
R

q
l
B
n`1

A
R

q
k
B
n`1

][q
k
P1

n`1
(cos a

l
)P1

n
(cos a

k
)M

n`1,n
#q

l
P1
n
(cos a

l
)P1

n`1
(cos a

k
)N

n,n`1
], (25)

where

M
n`1,n

"R C
1

H
1 n`1,n

AIn~1@2
(c
1
*R )I

n~3@2
(c
1
R)!

2(2n#1)

R
IB1BD

#J C
1

H
1 n`1,n

A!I
n~1@2

(c
1
R)I

n~3@2
(c
1
*R)#

2(2n#1)

R
IB2BD (26)

and

N
n,n`1

"RC
I
n`1@2

(c
1
*R)I

n~1@2
(c
1
R)

H
1 n,n`1

D!JC
I
n`1@2

(c
1
R)I

n~1@2
(c
1
*R)

H
1 n,n`1

D . (27)

In equations (26) and (27), R( ) ) and J ( ) ) denote the real and imaginary parts of a complex
variable, respectively, I

n$1@2
( ) ) and I

n$3@2
( ) ) are the modi"ed Bessel function of the "rst

kind of complex argument c
1
R (or c

1
*R), c

1
1 "Jjupk

i
and H

1
, IB1 and IB2 are given by the

following expressions, respectively:

H
1 m,n

"Cc1 RI
m~1@2

(c
1
R)#A

k
i

k
o

!1BmI
m`1@2

(c
1
R)D

]Cc1 *RI
n~1@2

(c
1
*R)#A

k
i

k
o

!1BnI
n`1@2

(c
1
*R)D,
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IB1"P
R

0

I
n`1@2

(c
1
r)I

n~1@2
(c
1
*r) dr"

=
+
p/0

=
+
s/0

1

p!

1

C(n#p#3/2)

]
1

s!

1

C (n#s#1/2) A
c
12B

n`2p`1@2

A
c
1
*

2 B
n`2s~1@2 R2(n`p`s)`1

2(n#p#s)#1
(28)

and

IB2"P
R

0

I
n`3@2

(c
1
r)I

n`1@2
(c
1
*r) dr"

=
+

p/0

=
+
s/0

1

p!

1

C (n#p#5/2)

]
1

s!

1

C(n#s#3/2) A
c
12B

n`2p`3@2

A
c
1
*

2 B
n`2s`1@2 R2(n`p`s)`3

2(n#p#s)#3
. (29)

In equations (28) and (29), the following series expansion for the modi"ed Bessel functions of
the "rst kind was considered:

Il(x6
)"

=
+

p/0

1

p!

1

C(l#p#1) A
x
6
2B

l`2p
, (30)

where C ( ) ) is the Gamma function of a complex argument x
6
.

2.3. EQUATION OF MOTION

The equation of vertical motion of the conductive sphere was derived by applying
Newton' second law, that is,

M
d2z@
dt2

"F
z{
!Mg, (31)

where d2z@/dt2 is the acceleration of the sphere, F
z{

Lorentz force measured with respect to
the primed reference frame, and g the gravitational acceleration. The levitation force in
equation (31) is measured with respect to the "xed reference frame and, consequently, the
sti!ness and damping components of the levitation force need also to be expressed in that
reference frame. In their expressions, the quantities which depend upon the vertical
co-ordinate z are the sine and cosine functions,

sin a
k
"

b
k

q
k

, cos a
k
"!

z
1
!(h

k
!h

1
)

q
k

, (32, 33)

q
k
"Jb2

k
#[z

1
!(h

k
!h

1
)]2 , (34)

where z
1

is the distance from the origin of the unprimed reference frame to the plane of the
bottom loop. Therefore, to express the forces with respect to the "xed reference frame, the
transformation

z
1
"Dz(t) D"z@ (t)!h

1
(35)

was applied in equations (32)}(34). The velocity of the moving sphere has to be computed in
the "xed reference frame too. The relationship between the velocities measured in the
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mobile and "xed reference frames,

v"!v@, (36)

was also considered.
Upon substituting equations (32)}(36) into equations (25) and (24), writing the velocity of

the spheres as v@"dz@/dt, and manipulating, the equation of vertical motion reads

d2z@
dt2

#

C(z@)
M

dz@
dt

#

K(z@)
M

#g"0, (37)

where C(z@) and K(z@) are given by the expressions

C(z@)"!

1

v@
F
z{,d

"

npk2
i
R

2

N
+
l/1

I
l
sin a@

l

N
+
k/1

I
k
sin a@

k

=
+
n/2

n!1

n (4n2!1) A
R

q@
l
B
n

A
R

q@
k
B
n

]P1
n
(cos a@

l
)P1

n
(cos a@

k
) (38)

and

K(z@)"!F
z{,s

"

nupk2
i
R

4

N
+
l/1

I
l
sin a@

l

N
+
k/1

I
k
sin a@

k

=
+
n/1

1

n#1 A
R

q@
l
B
n`1

A
R

q@
k
B
n`1

][q@
k
P1

n`1
(cos a@

l
)P1

n
(cos a@

k
)M

n`1,n
#q@

l
P1

n
(cos a@

l
)P1

n`1
(cos a@

k
)N

n,n`1
], (39)

where

sin a@
k
"

b@
k

q@
k

, cos a@
k
"!

z@(t)!h@
k

q@
k

, (40, 41)

q@
k
"Jb@2

k
#[z@(t)!h@

k
]2 (42)

and M
n`1,n

and N
n,n`1

are given by equations (26) and (27) respectively.

2.4. LINEARIZATION OF THE EQUATION OF MOTION

Small perturbations from the equilibrium position of the levitated sphere can be
predicted approximately by linearized equations of motion [10]. Assuming that z@(t) has the
form

z@(t)"z@
e
#f(t), (43)

where z@
e
is the equilibrium position and f(t) the small perturbation, the non-linear damping

and sti!ness coe$cients C (z@) and K (z@) can be expanded in Taylor series about z@
e
, resulting

C (z@)"C(z@
e
)#

1

1!

dC(z@)
dz@ K

z{/z{e

f#
1

2!

d2C(z@)
dz@2 K

z{/z{e

f2#2

"C
0
#C

1
f#C

2
f2#2, (44)
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K(z@)"K (z@
e
)#

1

1!

dK (z@)
dz@ K

z{/z{e

f#
1

2!

d2K(z@)
dz@2 K

z{/z{e

f2#2

"K
0
#K

1
f#K

2
f2#2. (45)

Retaining the "rst term in equation (44), the "rst two terms in equation (45), and observing
that K

0
/M#g"0, the linearized equation of motion, which approximates equation (37),

reads

d2f
dt2

#

C
0

M

df
dt

#

K
1

M
f"0. (46)

The expressions for C
0

and K
1

can be developed from equations (38) and (39), respectively,
by computing C

0
"C(z@

e
) and K

1
"dK (z@)/dz@ D

z{/z{e
.

Comparing equation (46) with the equation for the viscously damped free vibration of the
form [12]

d2f
dt2

#2mu
n

df
dt

#u2
n
f"0 (47)

and identifying the coe$cients, the expressions for the damping factor m and natural
frequency u

n
were obtained, respectively,

m"
C

0
2Mu

n

, u
n
"S

K
1

M
. (48, 49)

Depending on the damping factor m, the following three situations can occur: underdamped
motion (m(1)0), critically damped motion (m"1)0), and overdamped motion (m'1)0).

3. RESULTS AND DISCUSSION

Some comments regarding the mathematical model in section 2 should be made at this
point.

The expression for the damping component f
d

of the Lorentz force density in
equation (12) was obtained by neglecting the di!usion of the magnetic "eld in the conductor
during the motion. It was also assumed that the magnetic "eld induced by the sphere
current p (v]B

1 app
) is negligible compared with the imposed "eld B

1 app
. Therefore, special

attention must be paid to the selection of the conductive materials to which the
mathematical model developed in section 2 can be applied. One way to decide whether the
applied magnetic "eld B

1 app
is altered by the motion is to compute the dimensionless

quantity called the magnetic Reynolds number. It can be de"ned by the relationship

R
m
"k

i
plv,

where k
i
"k

r
k
0

is the magnetic permeability, k
r
the relative magnetic permeability, k

0
the

magnetic permeability of free space, p the electric conductivity, l a reference length, and
v a reference velocity. If R

m
is signi"cant compared with unity, the applied magnetic "eld is

altered appreciably by the motion. If R
m

is small compared with unity, then the magnetic
"eld induced by the current p (v]B

1 app
) can be neglected. The length l can be chosen as the

same order as the radius R of the spherical specimens considered for numerical simulations,
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that is, l"R+0)001 m. Let us discuss "rst the class of diamagnetic conductors, or.
generally, the conductors with k

i
"k

0
"4n]10~7 H/m and electric conductivity of the

order 107 S/m. For this type of conductors, the magnetic Reynolds number is of the order
R

m
+0)01v. Typical values for the velocity measured during levitation experiments of such

materials are in the range 0)1}1)0 m/s. Therefore, R
m
+0)001}0)01 and, in this case, the

applied magnetic "eld B
1 app

is not altered by the motion. Now, let us consider linear
ferromagnetic materials with k

r
+100}1000. The same values for the electric conductivity

and velocity as in the previous case can be applied, resulting R
m
+0)1}10)0. It follows that

the applied magnetic "eld B
1 app

is altered by the motion depending upon the properties of
the particular material. For example, the magnetic Reynolds number computed for
aluminum and copper, with the electromagnetic properties listed in Table 1 [13, 14] and
v"1)0 m/s gives R

m
+0)05 and 0)08 respectively. Therefore, the mathematical model

proposed in this work is appropriate for aluminum and copper, and, in general, for all
diamagnetic conductors. Instead, the magnetic Reynolds number gives R

m
+4)0 for nickel,

which is a ferromagnetic material. Since this value of R
m

is comparable with the unity,
special attention must be paid in interpreting the results of the theory for this class of
materials.

Figure 2 shows the typical plots for sti!ness and damping coe$cients, K(z@) and C(z@),
respectively, with respect to position z@ of the sphere for a levitation system composed of two
loops and an aluminum specimen. Similar plots can be obtained for copper specimens. As
one can notice from Figure 2(b), the damping coe$cient C(z@) given by equation (38) is
positive for any position of the sphere. Therefore, the damping component of the levitation
force F

z{,d
"!v@C(z@) and the velocity v@ have opposite directions, which means that

F
z{,d

tends to retard the motion of the sphere. This result is entirely consistent with Lenz's
rule, which states that the e!ect of the motion of a conductive body in a non-uniform
magnetic "eld tends to cancel out the cause that producers it. For the levitation system
studied here, the cause that initiates the motion is the sti!ness component F

z{,s
, which

pushes the specimen towards the equilibrium position. The e!ect is the damping component
F
z{,d

, which opposes the action of the sti!ness component, giving rise to a damped
oscillation about the equilibrium position.

The linearization procedure in section 2.4 for equation (37) is also shown in Figure 2. The
equilibrium position z@

e
in equation (43) is given by the solution of the equation K (z@

e
)"Mg.

The expressions for K(z@) and C(z@) were expanded in Taylor series about the resulted
equilibrium position, as described in section 2.4. Retaining the "rst two terms for K(z@) and
the "rst term for C(z@), the plots of the linearized expressions versus z@ are represented by the
straight lines in Figures 2(a) and 2(b) respectively. For small perturbations about z@

e
, the

sti!ness and damping coe$cients can be approximated by the values of the coe$cients K
1

and C
0

respectively.
TABLE 1

Physical and electromagnetic properties of the considered materials

Density (o) (kg/m3) Electric conductivity (p) (S/m)
Relative magnetic
permeability (k

r
)

Aluminum 2700 3)902]107 1
Copper 8960 6)293]107 1
Nickel 8880 1)636]107 200



Figure 2. Typical plot for (a) K(z@), (b) C (z@) versus z@ for an aluminum specimen. I
1
"I

2
"600 A, f"300 kHz,

R"2)0 mm, b@
1
"b@

2
"6)0 mm, h@

2
!h@

1
"4)6 mm.
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Regarding the numerical computation of the in"nite series in equations (38) and (39),
truncation at six terms for the series in n, and at 18 terms for the series in p and s are
su$cient to obtain correct results to four signi"cant "gures within an upper error bound of
0)1%. The Mathematica 3)0 [15] package was used to integrate numerically6 the equation
of motion (37).

Numerical simulations were performed for a levitation system composed of two current
loops having the radii b@

1
"b@

2
"6)0 mm and the position co-ordinates h@

1
and h@

2
,

respectively, with respect to the "xed reference frame. Calculations were done for spherical
specimens of aluminum and copper. The initial position was 1

4
(h@

1
#h@

2
). Every loop carried

an electric current $600 A r.m.s. which is positive for the lower loop and negative for the
upper loop (I

1
"!I

2
"600 A). The frequency of the current was f"300 kHz. Ten

equally spaced values for the radius R in the range 0)5}2)0 mm and for the distance h@
2
!h@

1
in the range 4)6}10)0 mm were considered. Figure 3 shows the results for the integration of
equation (37) for three di!erent geometric parameter sets. The values of the considered
parameters were R"0)5 mm, h@

2
!h@

1
"4)6 mm, R"1)25 mm, h@

2
!h@

1
"4)6 mm, and



Figure 3. Numerical simulations of the non-linear equation of motion for (a) R"0)5 mm, h@
2
!h@

1
"4)6 mm,

(b) R"1)25 mm, h@
2
!h@

1
"4)6 mm, (c) R"2)0 mm, h@

2
!h@

2
"4)6 mm. I

1
"!I

2
"600 A, f"300 kHz,

b@
1
"b@

2
"6)90 mm.

ELECTROMAGNETICALLY LEVITATED SPHERE 571
R"2)0 mm, h@
2
!h@

1
"4)6 mm and the results shown in Figures 3(a), 3(b) and 3(c)

respectively.
The linearized model developed in section 2.4 was used to estimate the damping and

natural frequency. After identifying the coe$cients of the linearized equation of motion (46),
the damping factor and natural frequency were computed by using equations (47) and (48)
respectively. Figures 4(a) and 4(b) show the contour plots for the damping factor m for
aluminum and copper specimens respectively. The dimensionless quantities (h@

2
!h@

1
)/b@

1
and R/d, where d"1/n fk

i
p is the skin depth, were considered. Similarly, Figures 5(a) and

5(b) show the contour plots for the natural frequency f
n
"u

n
/2n. The natural frequency was

also computed by applying Holmes linearized theory [8] in Tables 2 and 3. These tables list
the values of the natural frequency for aluminum and copper, respectively, obtained from
equation (48) (denoted by f

n
) and equation (24) (p. 3104 in Holmes paper (denoted by f

nH
).



Figure 4. Contour plot for the damping factor m calculated for (a) aluminum specimens, (b) copper specimens.
I
1
"I

2
"60)0 A, f"300 kHz, b@

1
"b@

2
"6)0 mm.
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One can observe a very good agreement between the results obtained in both ways. This
outcome helps validate our mathematical model.

The approach proposed in this work may be a start point for the coil design. The
expression of the levitation force due to the motion of specimens developed in section 2.1
can be used to estimate the damping in the levitation system. Linearizing the equation of
motion about the equilibrium position of the specimens, one can calculate the damping
factor and the natural frequency. Hence, regions of stable and desired damped levitation
along the vertical axis of the coil can be predicted, a fact that helps design good levitation
coils.



Figure 5. Contour plot for the natural frequency f
n

calculated for (a) aluminum specimens, (b) copper
specimens. I

1
"I

2
"600 A f"300 kHz, b@

1
"b@

2
"6)0 mm.
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4. CONCLUSIONS

The vertical motion of a spherical metal levitated by two parallel loops carrying electric
currents in opposed direction was considered. The mathematical model of the motion was
developed and simulations were performed. The behavior of aluminum and copper
specimens was studied for various parameter sets of the levitation system. The equation of
motion was linearized about the equilibrium position and the damping factor and natural
frequency were estimated. The natural frequency was also computed and favourably
compared with other reported works.



TABLE 2

¹he natural frequency computed by applying our approach ( f
n
) and Holmes theory ( f

nH
) for

aluminum specimens

h@
2
!h@

1
"4)6 mm h@

2
!h@

1
"5)8 mm

R (mm) f
n
(Hz) f

nH
(Hz) f

n
(Hz) f

nH
(Hz)

0)50 29)47 29)36 31)26 31)20
0)95 33)98 33)90 36)16 36)12
1)25 34)27 34)07 36)74 36)70
1)70 33)26 33)04 36)23 36)11
2)00 31)94 31)69 35)34 35)22

h@
2
!h@

1
"7)0 mm h@

2
!h@

1
"10)0 mm

0)50 30)81 30)76 24)71 24)71
0)95 35)81 35)78 28)97 28)98
1)25 36)62 36)59 29)97 29)98
1)70 36)63 36)55 30)73 30)75
2)00 36)18 36)11 31)02 31)02

TABLE 3

¹he natural frequency computed by applying our approach ( f
n
) and Holmes theory ( f

nH
) for

copper specimens

h@
2
!h@

1
"4)6 mm h@

2
!h@

1
"5)8 mm

R (mm) f
n
(Hz) f

nH
(Hz) f

n
(Hz) f

nH
(Hz)

0)50 14)10 11)85 16)66 15)52
0)95 16)86 15)40 19)10 18)31
1)25 16)84 15)35 19)25 18)49
1)70 15)68 13)84 18)62 17)79
2)00 12)68 9)52 16)44 15)25

h@
2
!h@

1
"7)0 mm h@

2
!h@

1
"10)0 mm

0)50 16)99 16)23 14)32 14)21
0)95 19)33 18)81 16)15 16)06
1)25 19)62 19)13 16)56 16)50
1)70 19)35 18)87 16)78 16)76
2)00 17)42 16)76 15)39 15)35
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